Chemically induced mobility gaps in graphene nanoribbons: a route for upscaling device performances.
نویسندگان
چکیده
We report a first-principles based study of mesoscopic quantum transport in chemically doped graphene nanoribbons with a width up to 10 nm. The occurrence of quasi-bound states related to boron impurities results in mobility gaps as large as 1 eV, driven by strong electron-hole asymmetrical backscattering phenomena. This phenomenon opens new ways to overcome current limitations of graphene-based devices through the fabrication of chemically doped graphene nanoribbons with sizes within the reach of conventional lithography.
منابع مشابه
Electronic properties of hydrogenated porous Graphene based nanoribbons: A density functional theory study
The structural and electronic properties of the hydrogenated porous graphene nanoribbons were studied by using density functional theory calculations. The results show that the hydrogenated porous graphene nanoribbons are energetically stable. The effects of ribbon type and ribbon width on the electronic properties of these nanoribbons were investigated. It was found that both armchair and zigz...
متن کاملEdge functionalized germanene nanoribbons: impact on electronic and magnetic properties
Germanene exhibits extremely high mobility, massless fermion behavior, and strong spin–orbit coupling drawing tremendous interest for high performance devices. It has a buckled two-dimensional structure, but not the intrinsic energy band gap and structural stability required for logic and switching devices. Application of a perpendicular electric field, surface adsorption, confinement of an arm...
متن کاملElectronic and Aromatic properties of Graphene and Nanographenes of various kinds:
Using suitable Density functional theory (DFT) methods and models of various sizes and symmetries, we have obtained the aromaticity pattern of infinite Graphene, which is an intrinsically collective effect, by a process of “spatial” evolution. Using a similar process backwards we obtain the distinct aromaticity pattern(s) of finite nanographenes, graphene dots, antidots, and graphene nanoribbon...
متن کاملDisorder-induced variability of transport properties of sub-5 nm-wide graphene nanoribbons
Transport properties of sub-5 nm-wide graphene nanoribbons (GNRs) are investigated by using atomistic non-equilibrium Green’s function (NEGF) simulations and semiclassical mobility simulations of large ensembles of randomly generated nanoribbons. Realistic GNRs with dimensions targeting the 12 nm CMOS node are investigated by accounting for edge defects, vacancies and potential fluctuations. Ef...
متن کاملChemically derived, ultrasmooth graphene nanoribbon semiconductors.
We developed a chemical route to produce graphene nanoribbons (GNR) with width below 10 nanometers, as well as single ribbons with varying widths along their lengths or containing lattice-defined graphene junctions for potential molecular electronics. The GNRs were solution-phase-derived, stably suspended in solvents with noncovalent polymer functionalization, and exhibited ultrasmooth edges wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Nano letters
دوره 9 7 شماره
صفحات -
تاریخ انتشار 2009